1
🔬#MESExperiments - Introduction to MES Science Experiments!
16:27
2
🔬#MESExperiments 1: Gyroscopes Precess Upwards on Low Friction & Rotating Surfaces
10:56
3
🔬#MESExperiments 2: Super Precision Gyroscope Precesses Upwards Even at Very Steep Angle
18:41
4
🔬#MESExperiments 3: Gyroscopes Exert 'Inertial Forces' With Zero Loss of Spin Rate
18:45
5
🔬#MESExperiments 4: Gyroscopes Precess with Zero ‘Angular Momentum’
2:16
6
🔬#MESExperiments 5: Gyroscopes Precess Upwards on Ice with Zero Centripetal Force
9:35
7
🔬#MESExperiments 6: Gyroscopes Precess with Zero Centripetal Force on Ice Even at Horizontal Angle
5:04
8
🔬#MESExperiments 7: Gyroscopes Precess Upwards on Ice Even While Outer Casing Spins
13:28
9
🔬#MESExperiments 8: Large Gyro Wheel Precesses at 1000X Torque Over-Unity
4:02
10
🔬#MESExperiments 9: Gyroscope With Counterweight Hung on a String Rises 'DOWNWARDS'!
12:09
11
🔬#MESExperiments 10: Gyroscopes on a String Can Rise But Not if Sufficient Counterweight is Added
12:13
12
🔬#MESExperiments 11: Increasing Gyroscope Spin Speed Doesn't Necessarily Increase Rising Rate
14:26
13
🔬#MESExperiments 12: Gyroscopes at Steeper Angles Usually Means Exponentially Longer Rising Times
9:56
14
🔬#MESExperiments 13: Steepest Gyroscope Rising Experiment Ever! 74 Degrees from the Vertical
2:14
15
🔬#MESExperiments 14: Angle of Gyroscope Has Little Effect on Rate/Period of Precession
10:38
🔬#MESExperiments 15: Gyroscopes Tend to Rise Until Precession Rate Has Peaked #Interesting
8:41
17
🔬#MESExperiments 16: Gyroscopes Can Even Rise on the Tip of a Thin Needle!
3:19
18
🔬#MESExperiments 17: Gyroscopes Can Even Rise on a Slanted Needle
2:01
19
🔬#MESExperiments 18: Gyroscopes Even Rise on a Flimsy Rotating Needle
1:15
20
🔬#MESExperiments 19: A Gyroscope is an Inverted Pendulum Without Electronic Sensors
15:27
21
🔬#MESExperiments 20: Forced Precession of a Gyroscope Generates Inertial Lift (i.e. Weight Loss)
1:04
22
🔬#MESExperiments 21: Added Weight Can Make a Gyroscope Rise Faster
2:58
23
🔬#MESExperiments 22: Added Weight Can Make a Gyroscope Rise Faster (No Casing Rotation)
2:25
24
🔬#MESExperiments 23: Added Weight Doesn’t Always Make Gyroscopes Rise Faster #Nuance
10:54
25
🔬#MESExperiments 24: Gyroscope Rises Even With 70% Added Weight #Amazing
2:16
26
🔬#MESExperiments 25: Increasing Spin Friction Can Make Gyroscopes Rise Much Faster
25:07
27
🔬#MESExperiments 26: Increasing Spin Friction Can Make a Gyroscope Rise from a Very Steep 72° Angle
4:40
28
🔬#MESExperiments 27: Spin Friction Can Make Gyroscope Rise from Steep 70° Angle (No Casing Rotation)
2:43
29
🔬#MESExperiments 28: Magnetic Spinning Top Aligns Opposite of Magnetic Attraction
2:20
30
🔬#MESExperiments 29: Magnetic Spinning Top Aligns Opposite of Asymmetric Magnetic Attraction
3:16
31
🔬#MESExperiments 30: Magnetic Spinning Top Aligns Opposite of Both Gravity and Magnetic Attraction
2:11
32
🔬#MESExperiments 31: Mechanical Demonstration of Inertia by Francis McCabe
3:21
33
🔬#MESExperiments 32: Comparing Tippe Top, Phi Top, and Gyroscope Rising Tests
2:54

🔬#MESExperiments 15: Gyroscopes Tend to Rise Until Precession Rate Has Peaked #Interesting

1 year ago
95

In #MESExperiments 15 I go over the process of very tediously measuring a gyroscope’s angle of steepness for each precession revolution in order to analyze and learn from the data. This specific gyro test had a starting angle of 65° from the vertical and rose 45° to a final risen position of 20°. I chose this specific gyro experiment to analyze because I wanted to compare the peak risen position with the precession rate or period, which in our case is defined as the number of precession revolutions per time (I used per minute hence RPM).

The data was compiled following Excel spreadsheet and a full discussion is written up in the corresponding Hive post:

- Excel File: https://1drv.ms/x/s!As32ynv0LoaIh_JNJ8foLHD9vY433A?e=ffHY2v
- Hive Notes: https://peakd.com/mesexperiments/@mes/mesexperiments-15-gyroscopes-tend-to-rise-until-precession-rate-has-peaked-interesting

Analyzing the data shows that the angle from vertical tends to increase linearly while the precession rate or period increases more rapidly and is akin to an exponential rise. This pattern is followed until the gyro is at its highest risen position. Soon afterwards the gyro starts to descend downwards at a very fast rate and then its falling rate starts to slow down as the angle gets more steep. Likewise, just after the highest risen position the precession rate drops quickly but interestingly is sped back up again followed by a gradual slowing down as the gyro angle gets steeper.

Furthermore, I calculated the angular velocity of the center of mass of the gyro while assuming it was at the center of the gyro rotor. Interestingly, the angular velocity initially increases linearly and at a much less rate than the exponentially rising precession rate. But once the peak risen position is reached the angular velocity spiked very rapidly until it appears to level off at about 3 times the velocity at the risen position.

Note that the length from the stem to gyro rotor, hence the estimated center of mass (COM), is approximately 45 mm and the weight of the gyroscope used in this experiment is 150.68 g with the stem.

These are some very interesting findings which I will explore in further experiments.

Stay Tuned for #MESExperiments 16…

Related Videos:

#MESExperiments video series: https://peakd.com/experiments/@mes/list
DRAFT #MESExperiments video series: https://mes.fm/experiments-draft
#MESScience video series: https://mes.fm/science-playlist
#AntiGravity video series: https://peakd.com/antigravity/@mes/series
#FreeEnergy video series: https://mes.fm/freeenergy-playlist .

------------------------------------------------------

SUBSCRIBE via EMAIL: https://mes.fm/subscribe

DONATE! ʕ •ᴥ•ʔ https://mes.fm/donate

Like, Subscribe, Favorite, and Comment Below!

Follow us on:

MES Truth: https://mes.fm/truth
Official Website: https://MES.fm
Hive: https://peakd.com/@mes

MORE Links: https://linktr.ee/matheasy

Email me: contact@mes.fm

Free Calculators: https://mes.fm/calculators

BMI Calculator: https://bmicalculator.mes.fm
Grade Calculator: https://gradecalculator.mes.fm
Mortgage Calculator: https://mortgagecalculator.mes.fm
Percentage Calculator: https://percentagecalculator.mes.fm

Free Online Tools: https://mes.fm/tools

iPhone and Android Apps: https://mes.fm/mobile-apps

Loading 1 comment...