Premium Only Content
One Model For All The Tasks - BLIP (Author Interview)
#blip #interview #salesforce
Paper Review Video: https://youtu.be/X2k7n4FuI7c
Sponsor: Assembly AI
https://www.assemblyai.com/?utm_sourc...
This is an interview with Junnan Li and Dongxu Li, authors of BLIP and members of Salesforce research.
Cross-modal pre-training has been all the rage lately in deep learning, especially training vision and language models together. However, there are a number of issues, such as low quality datasets that limit the performance of any model trained on it, and also the fact that pure contrastive pre-training cannot be easily fine-tuned for most downstream tasks. BLIP unifies different tasks and objectives in a single pre-training run and achieves a much more versatile model, which the paper immediately uses to create, filter, clean and thus bootstrap its own dataset to improve performance even more!
OUTLINE:
0:00 - Intro
0:40 - Sponsor: Assembly AI
1:30 - Start of Interview
2:30 - What's the pitch?
4:40 - How did data bootstrapping come into the project?
7:10 - How big of a problem is data quality?
11:10 - Are the captioning & filtering models biased towards COCO data?
14:40 - Could the data bootstrapping be done multiple times?
16:20 - What was the evolution of the BLIP architecture?
21:15 - Are there additional benefits to adding language modelling?
23:50 - Can we imagine a modular future for pre-training?
29:45 - Diving into the experimental results
42:40 - What did and did not work out during the research?
45:00 - How is research life at Salesforce?
46:45 - Where do we go from here?
Paper: https://arxiv.org/abs/2201.12086
Code: https://github.com/salesforce/BLIP
Demo: https://huggingface.co/spaces/Salesfo...
Abstract:
Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to video-language tasks in a zero-shot manner. Code, models, and datasets are released at this https URL.
Authors: Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi
Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
-
LIVE
OhHiMark1776
5 days ago🟢12-06-25 ||||| HMR. 21: King of the Hill ||||| Halo MCC (2019)
110 watching -
20:08
MYLUNCHBREAK CHANNEL PAGE
9 hours agoThe Field Museum is From Another Timeline
62.4K17 -
LIVE
BigTallRedneck
2 hours agoRUMBLE SPARTANS HALO NIGHT
136 watching -
LIVE
AirCondaTv Gaming
2 hours ago $0.29 earnedHalo: The Master Chief Collection - Conda a Clause is Spreading some Plasma Holiday Cheer (Collab)
52 watching -
3:22:01
SpartakusLIVE
5 hours agoSOLOS on ARC Raiders || WZ Stream LATER
130K2 -
LIVE
GritsGG
7 hours agoBO7 Warzone Is Here! Win Streaking! New Leaderboard?
155 watching -
1:00:55
Jeff Ahern
7 hours ago $9.02 earnedThe Saturday show with Jeff Ahern
57.3K16 -
LIVE
Ouhel
9 hours agoSATURDAY | Battlefield 6 | Going for the Queen in Arc after | O'HELL LIVE |
74 watching -
LIVE
ShivEmUp
7 hours ago🔴LIVE🔴🔵Battlefield 6🔵Game Changing Updates?🔵Grumpy Bird🔵
38 watching -
7:10:39
Grant Cardone
9 hours agoHow to Find Your First $1million Profit In Real Estate
174K10