Premium Only Content
One Model For All The Tasks - BLIP (Author Interview)
#blip #interview #salesforce
Paper Review Video: https://youtu.be/X2k7n4FuI7c
Sponsor: Assembly AI
https://www.assemblyai.com/?utm_sourc...
This is an interview with Junnan Li and Dongxu Li, authors of BLIP and members of Salesforce research.
Cross-modal pre-training has been all the rage lately in deep learning, especially training vision and language models together. However, there are a number of issues, such as low quality datasets that limit the performance of any model trained on it, and also the fact that pure contrastive pre-training cannot be easily fine-tuned for most downstream tasks. BLIP unifies different tasks and objectives in a single pre-training run and achieves a much more versatile model, which the paper immediately uses to create, filter, clean and thus bootstrap its own dataset to improve performance even more!
OUTLINE:
0:00 - Intro
0:40 - Sponsor: Assembly AI
1:30 - Start of Interview
2:30 - What's the pitch?
4:40 - How did data bootstrapping come into the project?
7:10 - How big of a problem is data quality?
11:10 - Are the captioning & filtering models biased towards COCO data?
14:40 - Could the data bootstrapping be done multiple times?
16:20 - What was the evolution of the BLIP architecture?
21:15 - Are there additional benefits to adding language modelling?
23:50 - Can we imagine a modular future for pre-training?
29:45 - Diving into the experimental results
42:40 - What did and did not work out during the research?
45:00 - How is research life at Salesforce?
46:45 - Where do we go from here?
Paper: https://arxiv.org/abs/2201.12086
Code: https://github.com/salesforce/BLIP
Demo: https://huggingface.co/spaces/Salesfo...
Abstract:
Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to video-language tasks in a zero-shot manner. Code, models, and datasets are released at this https URL.
Authors: Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi
Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191
If you want to support me, the best thing to do is to share out the content :)
If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n
-
LIVE
DLDAfterDark
1 hour agoYou Keep a GUN Inside Your Draws?? Let's Talk About Your Tactical Undies
93 watching -
LIVE
DeadMomAlive
6 hours agoFace Paint Satur-SLAY! Fall Pumpkin! #BIRTHDAYMONTH
98 watching -
RiftTV
6 hours agoThe Death Rattle Of Con Inc BEGINS | SLIGHTLY OFFENSIVE
27.5K3 -
3:04:43
Mally_Mouse
11 hours ago🌶️ 🥵Spicy BITE Saturday!! 🥵🌶️- Let's Play: Shift Happens
65.3K1 -
LIVE
TinyPandaface
1 day agoYour FACE is a Gaming Channel! | Homebody - Part 4
57 watching -
2:56:32
Welcome to The Continental
3 hours ago🟩 ARC and Raiders 🐔
1.1K2 -
DVR
NewsTreason
2 hours agoDECLAS w/ Rambo & Dave: The Nuclear Option End Game | Future Proves Past: Subpoenas Fly, 8pm EST
37.4K44 -
40:06
Tundra Tactical
5 hours ago🛑LIVE NOW!! Honest Gun Company Slogans Gun Mad Libs and Much More
1.49K2 -
2:54:40
FrizzleMcDizzle
2 hours agoR.E.P.O. with friends
199 -
LIVE
Damysus Gaming
2 hours agoARC Raiders - Those DAMN SNITCHES Will be the Death of Me!!!!
10 watching