Dynamic Inference with Neural Interpreters (w/ author interview)

2 years ago
249

#deeplearning #neuralinterpreter #ai

This video includes an interview with the paper's authors!
What if we treated deep networks like modular programs? Neural Interpreters divide computation into small modules and route data to them via a dynamic type inference system. The resulting model combines recurrent elements, weight sharing, attention, and more to tackle both abstract reasoning, as well as computer vision tasks.

OUTLINE:
0:00 - Intro & Overview
3:00 - Model Overview
7:00 - Interpreter weights and function code
9:40 - Routing data to functions via neural type inference
14:55 - ModLin layers
18:25 - Experiments
21:35 - Interview Start
24:50 - General Model Structure
30:10 - Function code and signature
40:30 - Explaining Modulated Layers
49:50 - A closer look at weight sharing
58:30 - Experimental Results

Paper: https://arxiv.org/abs/2110.06399

Guests:
Nasim Rahaman: https://twitter.com/nasim_rahaman
Francesco Locatello: https://twitter.com/FrancescoLocat8
Waleed Gondal: https://twitter.com/Wallii_gondal

Abstract:
Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution. However, they are less capable of systematic generalization to data drawn from unseen but related distributions, a feat that is hypothesized to require compositional reasoning and reuse of knowledge. In this work, we present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules, which we call \emph{functions}. Inputs to the model are routed through a sequence of functions in a way that is end-to-end learned. The proposed architecture can flexibly compose computation along width and depth, and lends itself well to capacity extension after training. To demonstrate the versatility of Neural Interpreters, we evaluate it in two distinct settings: image classification and visual abstract reasoning on Raven Progressive Matrices. In the former, we show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner. In the latter, we find that Neural Interpreters are competitive with respect to the state-of-the-art in terms of systematic generalization

Authors: Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube: https://www.youtube.com/c/yannickilcher
Twitter: https://twitter.com/ykilcher
Discord: https://discord.gg/4H8xxDF
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn: https://www.linkedin.com/in/ykilcher
BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon: https://www.patreon.com/yannickilcher
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Loading comments...