Premium Only Content
Bounded Sequences, Completeness Axiom, and the Monotonic Sequence Theorem
In this video I first go over the definition of bounded sequences, then discuss the completeness axiom in number theory and how it is used to proof the monotonic sequence theorem. A sequence is bounded above if there is a number greater than every term in the sequence. A sequence is bounded below if there is a number smaller than every term. The completeness axiom simply states that for a set of real numbers with an upper bound, then there exists a number that is the least or smallest of upper bounds. Since an infinite number of upper bounds can exists, the least upper bound is simply the smallest one. This axiom also illustrates how there are no gaps or holes in real numbers, unlike that for the sets of only irrational or only rational numbers (the combination of which simply yield the set of real numbers).
The monotonic sequence theorem states that every bounded and monotonic sequence (increasing or decreasing) are convergent. By the completeness axiom for real numbers, I rearrange the least upper bound of the sequence to obtain the definition of the limit of a sequence, thus proving its convergence.
#math #sequences #calculus #completeness #logic
Timestamps:
- Definition 5: Sequences bounded above and bounded below: 0:00
- Not every bounded sequence is convergent: 2:16
- Not every monotonic sequence is convergent: 3:05
- A bounded and monotonic sequence must be convergent: 3:25
- Completeness Axiom: no hole or gap in the real number line: https://x.com/i/grok/share/X04g5xItDl2FVk8iZxLgQjfvc 5:16
- Completeness of the real number Wikipedia: https://en.wikipedia.org/wiki/Completeness_of_the_real_numbers 8:13
- Monotonic Sequence Theorem and proof 9:30
- Used completeness axiom to obtain the definition of the limit: 14:16
- Similar proof for greatest lower bound for a decreasing and bounded sequence: 14:46
Notes and playlists:
- Summary: https://inleo.io/threads/view/mes/re-leothreads-24x7zlzue
- Playlist: https://www.youtube.com/playlist?list=PLai3U8-WIK0HUgfK34Voi6BvrNqt4X4BV
- Notes: https://peakd.com/mathematics/@mes/infinite-sequences-limits-squeeze-theorem-fibonacci-sequence-and-golden-ratio-more
- Infinite Sequences and Series playlist: https://www.youtube.com/playlist?list=PLai3U8-WIK0EXHAJ3vRg0T_kKEyPah1Lz .
------------------------------------------------------
Become a MES Super Fan! https://www.youtube.com/channel/UCUUBq1GPBvvGNz7dpgO14Ow/join
DONATE! ʕ •ᴥ•ʔ https://mes.fm/donate
SUBSCRIBE via EMAIL: https://mes.fm/subscribe
MES Links: https://mes.fm/links
MES Truth: https://mes.fm/truth
Official Website: https://MES.fm
Hive: https://peakd.com/@mes
Email me: [email protected]
Free Calculators: https://mes.fm/calculators
BMI Calculator: https://bmicalculator.mes.fm
Grade Calculator: https://gradecalculator.mes.fm
Mortgage Calculator: https://mortgagecalculator.mes.fm
Percentage Calculator: https://percentagecalculator.mes.fm
Free Online Tools: https://mes.fm/tools
iPhone and Android Apps: https://mes.fm/mobile-apps
-
2:34:36
Math Easy Solutions
7 days ago $0.52 earnedMES Livestream 114: Halloween Emergency Broadcast
4142 -
LIVE
Mally_Mouse
3 hours ago🌶️ 🥵Spicy BITE Saturday!! 🥵🌶️- Let's Play: Minecraft Christmas Adventure!!
3,311 watching -
2:14:31
Side Scrollers Podcast
8 hours agoSide Scrollers INVITE ONLY - Live From Dreamhack
149K9 -
1:18:23
Simply Bitcoin
2 days ago $13.38 earnedThe Bitcoin Crucible w/ Alex Stanczyk and Lawrence Lepard
32.4K4 -
1:25:03
Jeff Ahern
8 hours ago $20.11 earnedThe Saturday Show with Jeff Ahern
93.7K12 -
1:31:56
Michael Franzese
23 hours agoWill NBA do anything about their Gambling Problems?
146K28 -
57:26
X22 Report
12 hours agoMr & Mrs X - The Food Industry Is Trying To Pull A Fast One On RFK Jr (MAHA), This Will Fail - EP 14
126K77 -
2:01:08
LFA TV
1 day agoTHE RUMBLE RUNDOWN LIVE @9AM EST
174K15 -
1:28:14
On Call with Dr. Mary Talley Bowden
10 hours agoI came for my wife.
45.7K37 -
1:06:36
Wendy Bell Radio
15 hours agoPet Talk With The Pet Doc
85K37