ActInf ModelStream 016.1: Eli Sennesh and Tommaso Salvatori "Divide-and-Conquer Predictive Coding"

6 months ago
5

"Divide-and-Conquer Predictive Coding: a structured Bayesian inference algorithm"
https://www.arxiv.org/abs/2408.05834
https://github.com/esennesh/dcpc_paper
Eli Sennesh, Hao Wu, Tommaso Salvatori
Unexpected stimuli induce "error" or "surprise" signals in the brain. The theory of predictive coding promises to explain these observations in terms of Bayesian inference by suggesting that the cortex implements variational inference in a probabilistic graphical model. However, when applied to machine learning tasks, this family of algorithms has yet to perform on par with other variational approaches in high-dimensional, structured inference problems. To address this, we introduce a novel predictive coding algorithm for structured generative models, that we call divide-and-conquer predictive coding (DCPC). DCPC differs from other formulations of predictive coding, as it respects the correlation structure of the generative model and provably performs maximum-likelihood updates of model parameters, all without sacrificing biological plausibility. Empirically, DCPC achieves better numerical performance than competing algorithms and provides accurate inference in a number of problems not previously addressed with predictive coding. We provide an open implementation of DCPC in Pyro on Github.

----

Active Inference Institute information:
Website: https://activeinference.org/
Twitter: https://twitter.com/InferenceActive
Discord: https://discord.gg/8VNKNp4jtx
YouTube: https://www.youtube.com/c/ActiveInference/
Active Inference Livestreams: https://coda.io/@active-inference-institute/livestreams

Loading comments...