Guide-Through To How To Build A Black Hole

PBS_SpaceTimePublished: February 21, 2018Updated: February 24, 2018
Published: February 21, 2018Updated: February 24, 2018

Earth mysteries are a wide range of spiritual, quasi-religious and pseudo-scientific ideas focusing on cultural and religious beliefs about the Earth, generally with regard to particular geographical locations of historical significance. Believers in Earth mysteries generally consider certain locations to be "sacred", or that certain spiritual "energies" may be active at those locations. The term "alternative archaeology" has also been used to describe the study of Earth mystery beliefs.

A black hole is a region of space-time exhibiting such strong gravitational effects that nothing—not even particles and electromagnetic radiation such as light—can escape from inside it. The theory of general relativity predicts that a sufficiently compact mass can deform space-time to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways a black hole acts like an ideal black body, as it reflects no light.

Moreover, quantum field theory in curved space-time predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

Black holes have mystified physicists for decades, but with the help of quantum mechanics, we are beginning to make serious progress in understanding these strange objects. This week on Space Time, Matt dives deeper into the physical process of creating a black hole, and what that can tell us about how black holes behave.

Take a look as this video is sure to broaden your horizons!

Be the first to suggest a tag