Premium Only Content
Prove que A − (B U C) = (A−B)∩(A−C) e A−(B∩C)=(A−B)U (A−C) Números e Funções reais PROFMAT
Prove que A − (B U C) = (A−B)∩(A−C) e A−(B∩C)=(A−B)U (A−C) Números e Funções reais PROFMAT
Seja membro deste canal e ganhe benefícios:
https://www.youtube.com/channel/UCN3Tme4DSsyT9Aezuntvocg/join
Exercícios do Livro Números Naturais e Funções para o PROFMAT
Playlist
https://www.youtube.com/playlist?list=PLgmdl5jsCXV2X6OKEUiihpytmld0CA1H9
#profmat #ENQ #mestrado #mestradoprofissional #matemática #números #indução #prova #demostração #conjuntos
(a) Para provar a igualdade, precisamos mostrar que todo elemento pertencente ao lado esquerdo da equação também pertence ao lado direito, e vice-versa.
Começando pelo lado esquerdo:
x ∈ A - (B U C)
Isso significa que x pertence a A, mas não pertence à união de B e C.
Se x não pertence à B U C, então x não pertence nem a B, nem a C. Logo, podemos escrever:
x ∈ A - B e x ∈ A - C
Portanto, x pertence à intersecção de (A - B) e (A - C). Assim, todo elemento do lado esquerdo da equação também pertence ao lado direito.
Agora, vamos mostrar que todo elemento do lado direito também pertence ao lado esquerdo:
x ∈ (A - B) ∩ (A - C)
Isso significa que x pertence à diferença entre A e B, e x pertence à diferença entre A e C.
Isso implica que x não pertence à união de B e C, já que não pertence nem a B, nem a C.
Assim, todo elemento do lado direito da equação também pertence ao lado esquerdo.
Portanto, concluímos que
A - (B U C) = (A - B) ∩ (A - C).
(b) Para provar a igualdade, novamente precisamos mostrar que todo elemento pertencente ao lado esquerdo da equação também pertence ao lado direito, e vice-versa.
Começando pelo lado esquerdo:
x ∈ A - (B ∩ C)
Isso significa que x pertence a A, mas não pertence à intersecção de B e C.
Se x não pertence à intersecção de B e C, então x não pertence nem a B, nem a C. Logo, podemos escrever:
x ∈ A - B ou x ∈ A - C
Portanto, x pertence à união de (A - B) e (A - C). Assim, todo elemento do lado esquerdo da equação também pertence ao lado direito.
Agora, vamos mostrar que todo elemento do lado direito também pertence ao lado esquerdo:
x ∈ (A - B) U (A - C)
Isso significa que x pertence à diferença entre A e B, ou x pertence à diferença entre A e C.
Isso implica que x não pertence à intersecção de B e C, já que não pertence nem a B, nem a C.
Assim, todo elemento do lado direito da equação também pertence ao lado esquerdo.
Portanto, concluímos que
A - (B ∩ C) = (A - B) U (A - C).
-
LIVE
Steven Crowder
1 hour ago🔴 Epstein Release Watch: What Happens When Trump Signs
50,077 watching -
LIVE
The Rubin Report
33 minutes agoDems Regret Epstein Files Release as Major Dem Names Come Out
1,373 watching -
LIVE
LFA TV
14 hours agoLIVE & BREAKING NEWS! | WEDNESDAY 11/19/25
4,031 watching -
1:04:10
VINCE
2 hours agoDemocrats Get Exposed By Their Own Vote | Episode 172 - 11/19/25
60.5K71 -
LIVE
Benny Johnson
1 hour ago🚨PANIC: Clintons Threatened With ARREST Over REFUSING Epstein Testimony | Files Release Imminent…
5,775 watching -
1:41:54
Graham Allen
2 hours agoEpstein Files WILL BE RELEASED!! Not How You Think! + Kirk’s Head Of Security Exposes ALL!!
116K700 -
LIVE
Badlands Media
9 hours agoBadlands Daily: November 19, 2025
3,423 watching -
LIVE
Committee on House Administration
20 hours agoFull Committee Hearing: “Taking Stock of the STOCK Act”
92 watching -
LIVE
Wendy Bell Radio
6 hours agoTruth Is A 4 Letter Word
7,067 watching -
LIVE
Major League Fishing
6 days agoLIVE! - Fishing Clash Team Series: Summit Cup - Day 4
173 watching