mRNA/mDNA 'εμβόλια' και ιονίζουσα ραδιοακτινοβολία

1 year ago
181

REFERENCES
[1] Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Vol.31, No.3, pp.230-2, (2013).

[2] Feinendegen LE, Pollycove M. Biologic responses to low doses of ionizing radiation: detriment versus hormesis. Part 1.
Dose responses of cells and tissues. J Nucl Med., Vol.42, No.7, (2001).

[3] Mieczkowska K., Deutsch A., McLellan B., Kabarriti R., Brodin N. P., Koba W. R., and Kosaku Shinoda, K., Investigating the role of interleukin-17 in radiation dermatitis. J of Clinical Oncology, Vol.39, No.15, (2021).

[4] Peltek, O.O., Muslimov, A.R., Zyuzin, M.V., Timin A. S., Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J Nanobiotechnol, Vol.17, No.90, (2019).

[5] Genetic Engineering and Biotechnology News. A Tap of Radiation Enhances Gene Editing of Human Stem Cells (23rd July 2015). [Online] 15 July 22. Avail. at: https://www.genengnews.com/topics/omics/a-tap-of-radiation-enhances-gene-editing-of-human-stem-cells/

[6] Hatada, S., Subramanian, A., Mandefro, B., Ren, S., Kim, H. W., Tang, J, Funari, V., Baloh, R. H., Sareen, D., rumugaswami, V., Svendsen, C. N. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells. Stem Cells Transl Med., Vol.4, No.9, pp.998-1010, (2015).

[7] Russell, E., Dunne, V., Russell, B., Mohamud, H., Ghita, M., McMahon, S. J., Butterworth, K. T., Schettino, G., McGarry, C. K., Prise, K. M. Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiat Oncol, Vol.16, No.104, (2021).

[8] Clinical Trials, NIH US National Library of Medicine, Allegheny Singer Research Institute, ID:NCT04682847. Radiotherapy With Iron Oxide Nanoparticles (SPION) on MR-Linac for Primary & Metastatic Hepatic Cancers (First Posted on 24 Dec 2020). [Online] 15 July 22. Avail. at: https://clinicaltrials.gov/ct2/show/NCT04682847

[9] Singh, N., Jenkins, G. J., Asadi, R., Doak, S. H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). J Nano Rev., Vol.1, (2010).

[10] Nelson, N., R., Port, J., D., Pandey, M., K. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple
Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. J. Nanotheranostics, Vol.1, pp.105-135, (2020).

[11] Tenchov, R., CAS American Chemical Society. Understanding the nanotechnology in COVID-19 vaccines (18 February 2021). [Online] 15 July 22. Avail. at: https://www.cas.org/resource/blog/understanding-nanotechnology-covid-19-vaccines
[12] Perkin Elmer. Polyethylene Glycol(PEG) 4000, [14C]. [Online] 15 July 22. Avail. at: https://www.perkinelmer.com/uk/product/polyethylene-glycol-4000-14c-nec826050uc

[13] Liu, H., Laan, A., C., Plomp, J., Parnell, S., R., Men, Y., Dalgliesh, R., M., Eelkema, R., Denkova, A. G. Ionizing Radiation-Induced Release from Poly(ε-caprolactone-b-ethylene glycol) Micelles ACS Appl. Polym. Mater. Vol.3, No.2, pp.968–975, (2020).

[14] Mahadevappa, V. G., and Holub, B. J. The incorporation of [3H]glycerol and 1-[14C]acyl-sn-glycero-3-phosphocholine into different molecular species of phosphatidylcholine in human platelets. Canadian J of Biochemistry and Cell Biology. Vol.62, No.9, pp.827-830, (1984).

[15] Leyton, J., Smith, G., Zhao, Y., Perumal, M., Nguyen, Q-D., Robins, E., Arstad, E., Aboagye, E., O. [18F]Fluoromethyl-[1,2- 2H4]-Choline: A Novel Radiotracer for Imaging Choline Metabolism in Tumors by Positron Emission Tomography. J Cancer Res, Vol.69, No.19, pp.7721-7728, (2009).

[16] Yavin, E., Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture.
Patterns of acetylcholine phosphocholine, and choline phosphoglycerides labeling from (methyl-14C)choline., J of Biol Chem, Vol.251, No.5, pp.1392-1397, (1976).

[17] Ishikawa, Y., Umezawa, R., Yamamoto, T., Takahashi, N., Takeda, K., Suzuki, Y., Jingu, K. Radiation recall phenomenon after administration of the mRNA-1273 SARS-CoV-2 vaccine. Int Canc Conf J, Vol.11, pp.91–95, (2022).

[18] Soyfer, V., Gutfeld, O., Shamai, S., Schlocker, A., Merimsky, O. COVID-19 Vaccine-Induced Radiation Recall Phenomenon. Int J of Radiation Onco Biol Phys, Vol.110, Issue 4, pp.957-961, (2021).

[19] Steber, C. R., Ponnatapura, J., Hughes, R. T., Farris, M. K. Rapid Development of Clinically Symptomatic Radiation Recall Pneumonitis Immediately Following COVID-19 Vaccination. Cureus, Vol.13, No.4, (2021).

[20] Copplestone, D., Bielby, S., Jones, S. R., Patton, D., Daniel, P., Gize, I. Impact Assessment of Ionising Radiation on Wildlife. Environment Agency, R&D Publication 128, (July 2002) [Online] 15 July 22. Avail. at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290300/sr-dpub-128-e-e.pdf
URLlbry://@HealthTech#5/Talk2_GR_IK_ICXCNIKA_FINAL#a
Claim IDa9b3a9f8ca8ae790232b9d081fee146f618c2f65
199.35 MB

Loading comments...