1. Prove inverse trigonometry - sin^(-1)⁡ x =tan^(-1)⁡ ( x/√(1-x^2 ) or arcsinx = arctan(x/√(1-x^2)

    Prove inverse trigonometry - sin^(-1)⁡ x =tan^(-1)⁡ ( x/√(1-x^2 ) or arcsinx = arctan(x/√(1-x^2)

    30
  2. Derivative of Inverse of A Function at A Point

    Derivative of Inverse of A Function at A Point

    45
    11
    18