1. How to Evaluate Improper Integrals Easier Method

    How to Evaluate Improper Integrals Easier Method

    4
  2. Calculus Help: ∫ ∛x/(∛x+1) dx, ∫ 1/(1+√3x) dx - Integration by substitution - Techniques

    Calculus Help: ∫ ∛x/(∛x+1) dx, ∫ 1/(1+√3x) dx - Integration by substitution - Techniques

    22
  3. Integral of 1/(e^x+1) and integral of 1/(e^x-1)

    Integral of 1/(e^x+1) and integral of 1/(e^x-1)

    12
    3
    36
  4. the field of quotients of an integral domain

    the field of quotients of an integral domain

    35
    6
    25
  5. Complex analysis Integral of cos(ax)/coshx from 0 to infinity

    Complex analysis Integral of cos(ax)/coshx from 0 to infinity

    27
    8
    8
  6. Can you solve the following integral? integral of 1/(1+x^phi)^phi from 0 to infty

    Can you solve the following integral? integral of 1/(1+x^phi)^phi from 0 to infty

    27
    7
    18
  7. Complex contour: Integral of ln(x)/(x^2+1) and ln(x)^2/(x^2+1)

    Complex contour: Integral of ln(x)/(x^2+1) and ln(x)^2/(x^2+1)

    28
    6
    23
  8. Integral of 1/(x^3+1) step by step

    Integral of 1/(x^3+1) step by step

    15
    2
    5
  9. Calculus Help: Integral ∫ cos^2 ⁡x dx and ∫ sin^2 ⁡x dx - Integration by Trigonometric identities

    Calculus Help: Integral ∫ cos^2 ⁡x dx and ∫ sin^2 ⁡x dx - Integration by Trigonometric identities

    40
  10. Calculus Help: Integral of 1/(x^2 √(9-x^2 )) dx - Integration by Trigonometric Substitution

    Calculus Help: Integral of 1/(x^2 √(9-x^2 )) dx - Integration by Trigonometric Substitution

    23
  11. Integral: ∫ cosx cos^2⁡ (sinx)dx ∫ sinx cos^2⁡ (cosx) dx ∫ cosx sin^2⁡ (sinx)dx ∫sinx sin^2⁡(cosx)dx

    Integral: ∫ cosx cos^2⁡ (sinx)dx ∫ sinx cos^2⁡ (cosx) dx ∫ cosx sin^2⁡ (sinx)dx ∫sinx sin^2⁡(cosx)dx

    37
  12. Calculus Help: Integral ∫ dx/(x^2 √(x^2-9)) - Integration by trigonometric substitution

    Calculus Help: Integral ∫ dx/(x^2 √(x^2-9)) - Integration by trigonometric substitution

    45