1
Limits Explained, Definition, Examples, Worksheet, Practice Problems - Calculus
19:54
2
Continuity of a Function, Definition, 3 Conditions, Discontinuities, Practice Examples - Calculus
16:54
3
Intermediate Value Theorem, Visual Proof, Application, Exercises - Calculus
2:12
4
Derivative of a Function, Definition, First Principles, Geometry, Examples - Calculus
8:24
5
Differentiability and Continuity of Function, Rates of Change, Visual Proof, Example - Calculus
3:47
6
Derivative Rules, Power Rule for Differentiation - Calculus
4:29
7
Derivatives of Elementary Functions, sin(x), cos(x), e^x, ln(x) - Calculus
5:16
8
Product Rule, Differentiation, Basic Proof, Examples - Calculus
2:33
9
Quotient Rule for Differentiation, Mnemonic, Examples - Calculus
1:24
10
Derivatives of Trig Functions, Basic Proofs, tan(x), cot(x), sec(x), cosec(x), Examples - Calculus
5:32
11
Chain Rule of Differentiation, Derivatives, Composite Functions, Examples - Calculus
2:56
12
Implicit Differentiation, vs Explicit, Chain Rule, Examples - Calculus
2:30
13
Derivatives of Inverse Functions, Basic Proof, Examples - Calculus
3:07
14
Derivatives of Inverse Trig Functions, Basic Proof, Examples - Calculus
3:40
15
Higher-Order Derivatives of Functions, Second Derivative, Examples - Calculus
2:24
16
Logarithmic Differentiation, Basic Proof, Exponential, Examples - Calculus
4:38
17
Derivatives in Context, Interpretation, Examples - Calculus
2:20
18
Straight Line Motion, Position, Displacement, Velocity, Acceleration, Speed, Distance - Calculus
9:54
19
Solving Related Rates Problems, Chain Rule, Derivatives - Calculus
3:02
20
Local Linearity and Error Approximation, Tangent Line, Examples - Calculus
5:01
21
L'Hospital's Rule, Limits, Indeterminate Forms, Examples - Calculus
7:46
22
Mean Value Theorem, Derivatives, Definition, Visual Proof, Examples - Calculus
2:07
23
Extreme Value Theorem, Visual Proof, Critical Points, Global and Local Extrema - Calculus
5:06
24
First Derivative Test, Local Extrema, Examples - Calculus
3:41
25
Candidates Test, Global Extrema, Example - Calculus
2:12
26
Second Derivative Test, Local Extrema, Visual Proof, Example - Calculus
3:59
27
Graphs of Functions and their Derivatives, Curve Sketching, Examples - Calculus
5:16
28
Connecting a Function and its Derivatives, Graphs, Position, Velocity, Acceleration - Calculus
1:37
29
Solving Optimisation Problems, Differentiation, Examples - Calculus
3:17
30
Behaviour of Implicit Relations, Derivatives, Examples - Calculus
3:48
31
Accumulation of Change, Derivative Formula, Meaning, Worksheet, Problems - Calculus
2:00
32
Riemann Sums, Formula, Using Calculator, Examples, Practice Problems - Calculus
8:51
33
Definite Integral, Definition from Riemann sum, Formula, Symbol, Example - Calculus
5:02
34
Fundamental Theorem of Calculus, Part 1, Visual Proof, Definite Integral - Calculus
1:45
35
Behaviour of Accumulation Functions, Area, Graphical, Numerical, Analytical - Calculus
1:31
36
Definite Integrals, Formula, Properties, Rules, Integration over Discontinuities - Calculus
2:50
37
Fundamental Theorem of Calculus, Part 2, Definite Integrals, Basic Proof - Calculus
1:05
38
Indefinite Integrals, Antiderivatives, Power Rule, Trig, Inverse, Log, Exp, Examples - Calculus
9:00
39
Integration by Substitution Method Explained, Definite integrals, Examples - Calculus
2:55
40
Integration, Polynomial Long Division Method, Example, Worksheet, Practice Questions - Calculus
2:25
41
Integration, Completing the Square, Examples, Worksheet, Practice Problems - Calculus
1:53
42
Integration by Parts, Formula, Rule, Example, Order - Calculus
2:08
43
Integration, Partial Fractions, Formula, Irreducible Quadratic Factors, Worksheet - Calculus
6:56
44
Improper Integrals, Type 1 and 2, Examples, Converge or Diverge, Practice Problems - Calculus
2:37
45
Selecting Integration Techniques Explained, List of Methods - Calculus
5:40
46
Intro to Differential Equations, Modelling, Worksheet, Example - Calculus
2:12
47
Verifying Solutions to Differential Equations, Examples - Calculus
2:19
48
Sketching Slope Fields and Solution Curves Explained, Differential Equations, Example - Calculus
4:31
49
Euler's Method for Solving Differential Equations Explained, Example - Calculus
3:41
50
Separation of Variables Method, Differential Equations, Integration, Examples - Calculus
6:26
51
Exponential Models with Differential Equations, Population Growth, Examples - Calculus
4:52
52
Logistic Growth Differential Equation, Model, Example - Calculus
3:04
53
Mean Value Theorem for Integrals, Visual Proof, Examples, Practice Problems - Calculus
2:07
54
Connecting Position, Velocity, Acceleration of Functions, Integrals, Straight Line Motion - Calculus
2:57
55
Interpreting Definite Integrals in Applied Contexts Explained, Examples - Calculus
2:25
56
Area Between Two Curves, Integration, With Respect to x and y, Practice Problems - Calculus
7:21
Volumes with Cross Sections, Squares, Rectangles, Triangles and Semicircles - Calculus
9:37
58
Intro to Differential Equations, Modelling - Calculus
2:18
59
Verifying Solutions to Differential Equations - Calculus
2:09
60
Sketching Slope Fields, Differential Equations - Calculus
2:20
61
Sketching Solution Curves, Slope Fields - Calculus
2:28
62
Euler's Method, Approximating Solutions to ODEs, Example - Calculus
3:10
63
Separation of Variables, General Solution, ODEs - Calculus
2:27
64
Separation of Variables, Particular Solution, Differential Equations, Examples - Calculus
5:24
65
Exponential Models, Growth, Decay, Differential Equations - Calculus
7:02
66
Logistic Growth Model, Differential Equations - Calculus
5:44
67
Mean Value Theorem, Integration, Average Value, Continuous Function - Calculus
2:01
68
Displacement Vs Distance, Speed Vs Velocity, Acceleration, Integration - Calculus
5:38
69
Definite Integrals, Applied Contexts, Accumulation Functions - Calculus
5:03
70
Definite Integrals, Area Between Curves, Functions of x - Calculus
2:36
71
Definite Integrals, Area Between Curves, Functions of y - Calculus
4:26
72
Definite Integrals, Area Between Two Curves, Intersection Points - Calculus
6:10
73
Volumes with Cross Sections, Squares and Rectangles, Examples - Calculus
4:07
74
Volumes with Cross Sections, Triangles and Semicircles, Examples - Calculus
12:47
75
Volume with the Disk Method, Revolved Solid Around x or y axis, Cone, Sphere - Calculus
5:57
76
Volume with the Disk Method, Revolving Around other Axes - Calculus
2:48
77
Washer Method to Find the Volume of a Revolved Solid - Calculus
5:34
78
Volume with the Washer Method, Revolved Solid Around Line - Calculus
4:58
79
Arc Length, Planar Curve, Distance, Definite Integral - Calculus
4:46
80
Volume of Revolved Solid, Cylindrical Shell Method, Integration - Calculus
4:52
81
Parametric Equations, Definition, Differentiation - Calculus
3:44
82
Parametric Equations, Second Derivative - Calculus
2:33
83
Parametric Curve, Arc Length, Distance - Calculus
3:08
84
Vector-Valued Functions, Differentiation, Examples - Calculus
7:50
85
Vector-Valued Function, Integration - Calculus
2:56
86
Vector-Valued Functions and Motion in 2D Space - Calculus
6:30
87
Polar Coordinates, Polar Curves, Differentiation - Calculus
13:47
88
Polar Curve, Area of Region, Integration - Calculus
3:03
89
Polar Curve, Area of Region between Two Curves, Examples - Calculus
5:51
90
Conics in Polar Coordinates, Derivatives, Example - Calculus
27:59
91
Infinite Sequence, Definition, Representations, Convergence - Calculus
7:25
92
Infinite Series, Definition, Partial Sum, Convergence - Calculus
5:35
93
Geometric Series, Sum, Convergence - Calculus
3:42
94
nth Term Test, Divergence, Infinite Series, Examples - Calculus
2:20
95
Integral Test, Convergence, Infinite Series, Example - Calculus
3:34
96
Harmonic Series, p-series, Alternating, Convergence, Examples - Calculus
6:22
97
Direct and Limit Comparison Tests, Infinite Series, Convergence - Calculus
13:25
98
Alternating Series Test, Infinite Series - AP Calculus BC
2:26
99
Ratio Test, Infinite Series, Convergence, Examples - Calculus
4:39
100
Absolute and Conditional Convergence, Infinite Series, Examples - Calculus
7:53

Volumes with Cross Sections, Squares, Rectangles, Triangles and Semicircles - Calculus

2 hours ago
10

In calculus, volumes using cross-sections are found by integrating the area of a slice across a region, expressed as \(V=\int _{a}^{b}A(x)\,dx\) or \(V=\int _{c}^{d}A(y)\,dy\). To use this method, you must: 1) Determine the base of the solid and the shape of its cross-sections perpendicular to an axis (e.g., squares, rectangles, triangles), 2) Find the formula for the area, \(A\), of one cross-section in terms of the integration variable (e.g., \(A(x)\)), and 3) Integrate this area function over the appropriate bounds to sum the volumes of all the infinitesimal slices, yielding the total volume.

💡Steps for Calculating Volume with Cross-Sections
• Sketch the Solid and Its Base: Start by sketching the region that forms the base of the solid and the shape of its cross-sections.
• Identify the Cross-Sectional Area Function:
⚬ Choose the variable of integration (either \(x\) or \(y\)).
⚬ Determine the formula for the area, \(A\), of a single cross-section based on the shape of that slice (e.g., \(A=s^{2}\) for a square).
⚬ Express this area, \(A(x)\) or \(A(y)\), as a function of only that chosen integration variable.
• Determine the Limits of Integration: Find the upper and lower bounds (\(a\) and \(b\), or \(c\) and \(d\)) for your integration based on the region of the base.
• Set up and Evaluate the Integral:
⚬ The volume is then given by the definite integral: \(V=\int _{a}^{b}A(x)\,dx\) or \(V=\int _{c}^{d}A(y)\,dy\).
⚬ Evaluate the integral to find the total volume of the solid.

💡Example: Square Cross-Sections
• If the base is a region bounded by curves, and the cross-sections perpendicular to the x-axis are squares, the area \(A(x)\) of a cross-section is the square of the side length, \(s(x)\), found from the base.
• So, \(A(x)=[s(x)]^{2}\).
• The volume is then \(V=\int _{a}^{b}[s(x)]^{2}\,dx\), where \(a\) and \(b\) are the limits along the x-axis.

💡Key Concept:
• Infinite Summation: This method works by approximating the volume as a sum of infinitely many thin slices (each with volume Area × thickness) and then using the definite integral to find the exact sum.

💡Worksheets are provided in PDF format to further improve your understanding:
• Questions Worksheet: https://drive.google.com/file/d/1GQtYzPXeZpvnm7EdpOAPfEyr-VSltAse/view?usp=drive_link
• Answers: https://drive.google.com/file/d/1urkbDfPaDPsymE8T58TZZJHgeUw-P-qx/view?usp=drive_link

💡Chapters:
00:00 Volumes with cross sections, squares and rectangles, with example
02:41 Triangle and semicircle cross sections, with examples

🔔Don’t forget to Like, Share & Subscribe for more easy-to-follow Calculus tutorials.

🔔Subscribe: https://rumble.com/user/drofeng
_______________________
⏩Playlist Link: https://rumble.com/playlists/Ptm8YeEDb_g
_______________________
💥 Follow us on Social Media 💥
🎵TikTok: https://www.tiktok.com/@drofeng?lang=en
𝕏: https://x.com/DrOfEng
🥊: https://youtube.com/@drofeng

Loading comments...